dp[i][k][0 or 1]
0 <= i <= n-1, 1 <= k <= K
n 为天数,大 K 为最多交易数
此问题共 n × K × 2 种状态,全部穷举就能搞定。
for 0 <= i < n:
for 1 <= k <= K:
for s in {0, 1}:
dp[i][k][s] = max(buy, sell, rest)
f[i][k][0 or 1] represents max profit after day i and making at most K transaction with state j, j can be 0 or 1, 1 means hold
class Solution {
/*
股票交易通用模板
f[i][k][0 or 1] represents max profit after day i and making at most K transaction with state j, j can be 0 or 1, 1 means hold
base:
f[0][k][0] = 0
f[0][k][1] = 0
state:
f[i][k][0] = max(f[i-1][k][0], f[i-1][k][1] + prices[i]) //max(rest, sell)
f[i][k][1] = max(f[i-1][k][1], f[i-1][k - 1][0] - prices[i]) //max(rest, buy)
res: f[n-1][k][0]
这题还需要compare k with len/2
if k > len / 2, 就相当于是infininte transactions
whenver prices[i] - prices[i - 1] >0, then add to profit
*/
public int maxProfit(int k, int[] prices) {
int n = prices.length;
if (n < 2 || k == 0 ) return 0;
if (k > n / 2) {
return maxProfitWithInfiniteK(prices);
}
int[][][] dp = new int[n][k + 1][2];
//initialization
for (int j = 0; j <= k; j++) {
dp[0][j][0] = 0;
dp[0][j][1] = -prices[0];
}
for (int i = 1; i < n; i++) {
for (int j = 1; j <=k; j++) {
dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]);
dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]);
}
}
return dp[n-1][k][0];
}
private int maxProfitWithInfiniteK(int[] prices) {
int maxProfit = 0;
for (int i = 1; i < prices.length;i ++) {
maxProfit += Math.max(0, prices[i]- prices[i - 1]);
}
return maxProfit;
}
}
class Solution {
/*
简易解法
K = 1 transaction
keep track of minPrice and maxProfit
*/
public int maxProfit(int[] prices) {
int minPrice = Integer.MAX_VALUE;
int maxProfit = 0;
for (int i = 0; i < prices.length; i++) {
if (prices[i] < minPrice) {
minPrice = prices[i];
} else if (prices[i] - minPrice > maxProfit) {
maxProfit = prices[i] - minPrice;
}
}
return maxProfit;
}
}
class Solution {
/*
股票交易通用模板,第4题最general:
f[i][k][0 or 1] 前i天交易K次后在状态j时的max profit, j can be 0 or 1, 1 means hold
base: depends
res: f[n-1][k][0]
此题即为k = 1的特殊情况
f[i][0] = max(f[i-1][0], f[i-1][1] + prices[i])
f[i][1] = max(f[i-1][1], - prices[i]) //注意,不是max(f[i-1][1], f[i-1][0] - prices[i]) 因为只能交易一次
initial:
f[0][0] = 0, f[0][1] = -prices[0]
res:
f[n - 1][0]
*/
public int maxProfit(int[] prices) {
int n = prices.length;
if (n < 2) return 0;
int[][] f = new int[n][2];
//initialization
f[0][0] = 0;
f[0][1] = -prices[0];
for (int i = 1; i < n; i++) {
f[i][0] = Math.max(f[i-1][0], f[i-1][1] + prices[i]);
f[i][1] = Math.max(f[i-1][1], - prices[i]);
}
return f[n - 1][0];
}
}
Best Time to Buy and Sell Stock II
K= infinite的情况
这题可以用Greedy贪心来做
whenever prices[i] - prices[i - 1] >0, then add to profit
public int maxProfit(int[] prices) {
int n = prices.length;
if (n < 2) return 0;
int maxProfit = 0;
for (int i = 1; i < n;i ++) {
maxProfit += Math.max(0, prices[i]- prices[i - 1]);
}
return maxProfit;
}
带冷却时间的情况
K = Infinite
class Solution {
/*
股票交易通用模板
f[i][k][0 or 1] represents max profit after day i and making at most K transaction with state j, j can be 0 or 1, 1 means hold
base:
f[0][0] = 0
f[0][1] = -prices[0]
f[1][0] = max(f[0][0], f[0][1] + prices[1])
f[1][1] = max(f[0][1], -prices[1])
state:
f[i][0] = max(f[i-1][0], f[i-1][1] + prices[i]) //max(rest, sell)
f[i][1] = max(f[i-1][1], f[i-2][0] - prices[i]) //max(rest, buy)
res: f[n-1][0]
*/
public int maxProfit(int[] prices) {
int n = prices.length;
if ( n < 2) return 0;
int[][] f = new int[n][2];
//initialization
f[0][0] = 0;
f[0][1] = -prices[0];
f[1][0] = Math.max(f[0][0], f[0][1] + prices[1]);
f[1][1] = Math.max(f[0][1], -prices[1]);
for (int i = 2; i < n; i++) {
f[i][0] = Math.max(f[i - 1][0], f[i - 1][1] + prices[i]);
f[i][1] = Math.max(f[i - 1][1], f[i - 2][0] - prices[i]);
}
return f[n - 1][0];
}
}
带交易费的情况
K = Infinite
class Solution {
/*
股票交易通用模板
f[i][k][0 or 1] represents max profit after day i and making at most K transaction with state j, j can be 0 or 1, 1 means hold
base:
f[0][0] = 0
f[0][1] = -prices[0]
state:
f[i][0] = max(f[i-1][0], f[i-1][1] + prices[i] - fee) //max(rest, sell)
f[i][1] = max(f[i-1][1], f[i-1][0] - prices[i]) //max(rest, buy)
res: f[n-1][0]
*/
public int maxProfit(int[] prices, int fee) {
int n = prices.length;
if (n < 2) return 0;
int[][] f = new int[n][2];
//initialization
f[0][0] = 0;
f[0][1] = -prices[0];
for (int i = 1; i < n; i++) {
f[i][0] = Math.max(f[i - 1][0], f[i - 1][1] + prices[i] - fee);
f[i][1] = Math.max(f[i - 1][1], f[i - 1][0] - prices[i]);
}
return f[n - 1][0];
}
}
House Robber
相邻两家不能同时抢
class Solution {
/*
f[i] means max until first i houses
f[i] = max(f[i - 1], f[i - 2] + nums[i - 1])
res: f[n]
f[0] = 0
f[1] = nums[0]
*/
public int rob(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int n = nums.length;
int[] f = new int[n + 1];
f[0] = 0;
f[1] = nums[0];
for (int i = 2; i <= n; i++) {
f[i] = Math.max(f[i - 1], f[i - 2] + nums[i - 1]);
}
return f[n];
}
//rolling array to optimize for O(1) space, 2 var
public int rob(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int n = nums.length;
int include = 0, exclude = 0;
for (int i = 0; i < n; i++) {
int in = include, ex = exclude;
include = ex + nums[i];
exclude = Math.max(ex, in);
}
return Math.max(include, exclude);
}
}
House Robber II
收尾相连
所以针对收尾的两个房子有3种情况
both nums[0] and nums[n - 1] not rob
rob nums[0] only, not nums[n - 1]
rob nums[n - 1] only, not nums[0]
不用考虑第1种情况,因为结果可以被2,3 cover
可以转化为区间型 DP -> rob(int[] nums, int begin, int end)
class Solution {
/*
3 scenario:
1.both nums[0] and nums[n - 1] not rob
2.rob nums[0] only, not nums[n - 1]
3.rob nums[n - 1] only, not nums[0]
不用考虑第1种情况,因为结果可以被2,3 cover
区间型 DP -> rob(int[] nums, int begin, int end)
*/
public int rob(int[] nums) {
if (nums == null || nums.length == 0) return 0;
if (nums.length == 1) return nums[0];
int n = nums.length;
return Math.max(rob(nums, 0, n - 2), rob(nums, 1, n - 1));
}
private int rob(int[] nums, int begin, int end) {
int n = nums.length;
int exclude = 0, include = 0;
for (int i = begin; i <= end; i++) {
int in = include, ex = exclude;
include = ex + nums[i];
exclude = Math.max(in, ex);
}
return Math.max(include, exclude);
}
}
House Robber III
抢劫的路径改为binary tree
这个反而更简单了,divide & conquer返回resultType
Tree DFS traverse不需要memo, 因为没有重复计算可以优化
class Solution {
/*
Tree traverse不需要memo, 因为没有重复计算可以优化
*/
public int rob(TreeNode root) {
if (root == null) return 0;
int[] res = dp(root);
return Math.max(res[0], res[1]);
}
//res[0] max with root
//res[1] max without root
private int[] dp(TreeNode root) {
if (root == null) {
return new int[]{0,0};
}
int[] left = dp(root.left);
int[] right = dp(root.right);
int[] res = new int[2];
res[0] = root.val + left[1] + right[1];
res[1] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
return res;
}
}