字符串匹配
矩阵类的题目能用DFS解答的都要想到memoization来优化,Tree则不能用memo优化
Wildcard Matching
首先想DFS暴力解法的recursion递归的拆解逻辑,不要一上来就想DP
这题提供两种wildcard
'?' Matches any single character.
'*' Matches any sequence of characters (including the empty sequence).
重点就在"*", 可以match 0 or more chars, 那就分成两种情况讨论
match 0 char, then return isMatch(s, sIndex, p, pIndex + 1)
match at least 1 char, then return isMatch(s, sIndex + 1, p, pIndex)
定义好了递归3要素,至少可以写出DFS brute force solution
这里可以用memoization做优化实现o(m*n) Time, o(m*n) Space
class Solution {
/*
"abcab" and "*a*b"
p is allStar "***"
isMatch(s, sIndex, p, pIndex)
pIndex == sIndex -> return isMatch(s, sIndex + 1, p, pIndex + 1)
pIndex == ? -> return isMatch(s, sIndex + 1, p, pIndex + 1)
group into same isCharMatch(sChar, pChar)
pIndex == * -> return isMatch(s, sIndex, p, pIndex + 1) || isMatch(s, sIndex + 1, p, pIndex)
use memoization to avoid duplicate calculation
boolean[m][n] visited
boolean[m][n] memo
O(m * n) Time
O(m * n) Space
*/
public boolean isMatch(String s, String p) {
if (s == null || p == null) return false;
int m = s.length(), n = p.length();
//use memoization to avoid duplicate calculation
boolean[][] visited = new boolean[m][n];
boolean[][] memo = new boolean[m][n];
return isMatch(s, 0, p, 0, visited, memo);
}
//definition of recursion: check whether s.substring(sIndex) and p.substring(pIndex) can be a match or not
private boolean isMatch(String s, int sIndex, String p, int pIndex, boolean[][] visited, boolean[][] memo) {
//base case
if (pIndex == p.length()) {
return sIndex == s.length() ;
}
if (sIndex == s.length()) {
return isAllStar(p, pIndex);
}
//fetch from memo
if (visited[sIndex][pIndex]) {
return memo[sIndex][pIndex];
}
//transition
char sChar = s.charAt(sIndex), pChar = p.charAt(pIndex);
if (pChar == '*') {
memo[sIndex][pIndex] = isMatch(s, sIndex, p, pIndex + 1, visited, memo) || isMatch(s, sIndex + 1, p, pIndex, visited, memo);
} else {
memo[sIndex][pIndex] = isCharMatch(sChar, pChar) && isMatch(s, sIndex + 1, p, pIndex + 1, visited, memo);
}
//set memo
visited[sIndex][pIndex] = true;
return memo[sIndex][pIndex];
}
private boolean isAllStar(String p, int idx) {
for (int i = idx; i < p.length(); i++) {
if (p.charAt(i) != '*') {
return false;
}
}
return true;
}
private boolean isCharMatch(char sChar, char pChar) {
return sChar == pChar || pChar == '?';
}
}
Regular Expression Matching
做完wildcard matching之后再做这题思路就清晰很多了
和 Wildcard Matching 同样模板的代码, 只需要更改“*“ 的matching logic,就好
'*' Matches zero or more of the preceding element.
'*' 不会单独出现或者出现在首位
需要把'*'和前面的char连起来看, ‘‘c*a*b" -> "c*", 不能直接判断'*' char
class Solution {
/*
"abcab" and "c*a*b" -> '*' 不会单独出现或者出现在首位
isMatch(s, sIndex, p, pIndex)
pIndex == sIndex -> return isMatch(s, sIndex + 1, p, pIndex + 1)
pIndex == . -> return isMatch(s, sIndex + 1, p, pIndex + 1)
group into same isCharMatch(sChar, pChar)
遇到'*'不能单独处理,需要跟之前的char一起处理'a*'
'"a*", 小技巧, pIndex point to 'a', 判断pIndex + 1是否是*
pIndex + 1 == * -> return isMatch(s, sIndex, p, pIndex + 2) || (sameChar(sChar, pChar) & isMatch(s, sIndex + 1, p, pIndex))
use memoization to avoid duplicate calculation
boolean[m][n] visited
boolean[m][n] memo
O(m * n) Time
O(m * n) Space
*/
public boolean isMatch(String s, String p) {
if (s == null || p == null) return false;
int m = s.length(), n = p.length();
//use memoization to avoid duplicate calculation
boolean[][] visited = new boolean[m][n];
boolean[][] memo = new boolean[m][n];
return isMatch(s, 0, p, 0, visited, memo);
}
//definition of recursion: check whether s.substring(sIndex) and p.substring(pIndex) can be a match or not
private boolean isMatch(String s, int sIndex, String p, int pIndex, boolean[][] visited, boolean[][] memo) {
//base case
if (pIndex == p.length()) {
return sIndex == s.length() ;
}
if (sIndex == s.length()) {
return isEmpty(p, pIndex);
}
//fetch from memo
if (visited[sIndex][pIndex]) {
return memo[sIndex][pIndex];
}
//transition
char sChar = s.charAt(sIndex), pChar = p.charAt(pIndex);
if (pIndex + 1 < p.length() && p.charAt(pIndex + 1) == '*') {
memo[sIndex][pIndex] = isMatch(s, sIndex, p, pIndex + 2, visited, memo) || isCharMatch(sChar, pChar) && isMatch(s, sIndex + 1, p, pIndex, visited, memo);
} else {
memo[sIndex][pIndex] = isCharMatch(sChar, pChar) && isMatch(s, sIndex + 1, p, pIndex + 1, visited, memo);
}
//set memo
visited[sIndex][pIndex] = true;
return memo[sIndex][pIndex];
}
private boolean isEmpty(String p, int idx) {
for (int i = idx; i < p.length(); i+= 2) {
if (i + 1 >= p.length() || p.charAt(i + 1) != '*') {
return false;
}
}
return true;
}
private boolean isCharMatch(char sChar, char pChar) {
return sChar == pChar || pChar == '.';
}
}
Word Break
state:canBreak[i] means whether sb.substring(0, i) can be break
canBreak[i] = dict.contains(s.susbtring(j, i)) && canBreak[j]
i from [1, n]
j from [0, i)
return canBreak[n]
class Solution {
/*
state:canBreak[i] means whether sb.substring(0, i) can be break
canBreak[i] = dict.contains(s.susbtring(j, i)) && canBreak[j]
i from [1, n]
j from [0, i)
initial:
canBreak[0] = true
res:
return canBreak[n]
*/
public boolean wordBreak(String s, List<String> wordDict) {
int n = s.length();
Set<String> dict = new HashSet<>();
for (String word : wordDict) {
dict.add(word);
}
boolean[] canBreak = new boolean[n + 1];
canBreak[0] = true;
for (int i = 1; i <= n; i++) {
for (int j = 0; j < i; j++) {
if (dict.contains(s.substring(j, i)) && canBreak[j]) {
canBreak[i] = true;
break;
}
}
}
return canBreak[n];
}
}
Word Break II
same idea of wordBreak, use memo to avoid duplicate calculation
use Map for memo, key is string, value is List<String> that can be break for key
optimization: get maxLen of word in wordDict, then we just need to iterate for length of maxLen instead of iterate through whole string s.
class Solution {
/*
same idea of wordBreak, use memo to avoid duplicate calculation
use Map for memo, key is string, value is List<String>
optimization: get maxLen of word in wordDict, then we just need to iterate for length of maxLen instead of iterate through whole string s.
*/
public List<String> wordBreak(String s, List<String> wordDict) {
Set<String> dict = new HashSet<>();
int maxLen = 0;
for (String word : wordDict) {
dict.add(word);
maxLen = Math.max(maxLen, word.length());
}
return helper(s, dict, new HashMap<String, List<String>>(), maxLen);
}
//return all result for string s
private List<String> helper(String s, Set<String> dict, Map<String, List<String>> memo,int maxLen) {
if (memo.containsKey(s)) {
return memo.get(s);
}
List<String> res = new ArrayList<>();
if (s.length() == 0) return res;
for (int i = 1; i <= maxLen && i <= s.length(); i++) {
String word = s.substring(0, i);
if (!dict.contains(word)) continue;
if (i == s.length()) {
res.add(word);
break;
} else {
String suffix = s.substring(i);
List<String> segmentations = helper(suffix, dict, memo, maxLen);
for (String segmentation : segmentations) {
res.add(word + " " + segmentation);
}
}
}
memo.put(s, res);
return res;
}
}
Last updated
Was this helpful?